Convergent evolution

Convergent evolution describes the acquisition of the same biological trait in unrelated lineages.

The wing is a classic example of convergent evolution in action. Flying insects, birds, and bats have all evolved the capacity of flight independently. They have "converged" on this useful trait.

The ancestors of both bats and birds were terrestrial quadrupeds, and each has independently evolved powered flight via adaptations of their forelimbs. Although both forelimb adaptations are superficially "wing-shaped," they are substantially dissimilar in construction. The bat wing is a membrane stretched across four extremely elongated fingers, while the airfoil of the bird wing is made of feathers, which are strongly attached to the forearm (the ulna) and the highly fused bones of the wrist and hand (the carpometacarpus), with only tiny remnants of two fingers remaining, each anchoring a single feather. (Both bats and birds have retained the thumb for specialized functions.) So, while the wings of bats and birds are functionally convergent, they are not anatomically convergent.

Traits arising through convergent evolution are termed analogous structures, in contrast to homologous structures, which have a common origin. Bat and pterosaur wings are an example of analogous structures, while the bat wing is homologous to human and other mammal forearms, sharing an ancestral state despite serving different functions. Similarity in species of different ancestry that is the result of convergent evolution is called homoplasy. The opposite of convergent evolution is divergent evolution, whereby related species evolve different traits. On a molecular level, this can happen due to random mutation unrelated to adaptive changes; see long branch attraction. Convergent evolution is similar to, but distinguishable from, the phenomena of parallel evolution. Parallel evolution occurs when two independent but similar species evolve in the same direction and thus independently acquire similar characteristics—for instance gliding frogs have evolved in parallel from multiple types of tree frog.

2013-3-25 9:25:19

Posted by DoctorZ | 阅读全文 | 回复(1) | 引用通告 | 编辑

Re:Convergent evolution

For a particular trait, proceeding in each of two lineages from a specified ancestor to a later descendant, parallel and convergent evolutionary trends can be strictly defined and clearly distinguished from one another.[6] When both descendants are similar in a particular respect, evolution is defined as parallel if the ancestors considered were also similar, and convergent if they were not.

When the ancestral forms are unspecified or unknown, or the range of traits considered is not clearly specified, the distinction between parallel and convergent evolution becomes more subjective. For instance, the striking example of similar placental and marsupial forms is described by Richard Dawkins in The Blind Watchmaker as a case of convergent evolution, because mammals on each continent had a long evolutionary history prior to the extinction of the dinosaurs under which to accumulate relevant differences. Stephen Jay Gould describes many of the same examples as parallel evolution starting from the common ancestor of all marsupials and placentals. Many evolved similarities can be described in concept as parallel evolution from a remote ancestor, with the exception of those where quite different structures are co-opted to a similar function. For example, consider Mixotricha paradoxa, a microbe that has assembled a system of rows of apparent cilia and basal bodies closely resembling that of ciliates but that are actually smaller symbiont micro-organisms, or the differently oriented tails of fish and whales. On the converse, any case in which lineages do not evolve together at the same time in the same ecospace might be described as convergent evolution at some point in time.

The definition of a trait is crucial in deciding whether a change is seen as divergent, or as parallel or convergent. In the image above, note that, since serine and threonine possess similar structures with an alcohol side-chain, the example marked "divergent" would be termed "parallel" if the amino acids were grouped by similarity instead of being considered individually. As another example, if genes in two species independently become restricted to the same region of the animals through regulation by a certain transcription factor, this may be described as a case of parallel evolution — but examination of the actual DNA sequence will probably show only divergent changes in individual base-pair positions, since a new transcription factor binding site can be added in a wide range of places within the gene with similar effect.

A similar situation occurs considering the homology of morphological structures. For example, many insects possess two pairs of flying wings. In beetles, the first pair of wings is hardened into wing covers with little role in flight, while in flies the second pair of wings is condensed into small halteres used for balance. If the two pairs of wings are considered as interchangeable, homologous structures, this may be described as a parallel reduction in the number of wings, but otherwise the two changes are each divergent changes in one pair of wings.

Similar to convergent evolution, evolutionary relay describes how independent species acquire similar characteristics through their evolution in similar ecosystems, but not at the same time (dorsal fins of sharks and ichthyosaurs).

2013-3-25 9:31:54

Posted by doctorzhang | 个人主页 | 引用 | 返回 | 删除 | 回复


Powered by Oblog.